
 International Journal of Scientific Research in Modern Science and Technology

 ISSN: 2583 -7605 (Online)

 © IJSRMST | Vol. 3 | Issue 6 | June 2024

Available online at: https://ijsrmst.com/

DOI: https://doi.org/10.59828/ijsrmst.v3i6.216

IJSRMST | Received: 20 June 2024 | Accepted: 27 June 2024 | Published: 29 June 2024 (17)

An Overview of Git

Gayatri Makrand Ghodke
1
, Trupti Chavan

2

1
Student, Department of Computer Science, Sarhad College of Arts, Commerce and Science, Pune, India

2
Assistant Professor, Department of Computer Science, Sarhad College of Arts, Commerce and Science, Pune, India

1
Email: gayatrighodke03@gmail.com |

2
Email: truptichavan17.tc@gmail.com

ABSTRACT

 Git is a distributed version control system used in software development that tracks modifications

made to source code. Git, as opposed to centralized version control systems, enables several developers to

collaborate independently on a single project by letting them maintain separate local repositories that are

synchronized with a remote repository. Repositories, which hold the project's files and change history, are

essential to Git's operation. A commit in a repository is a snapshot of the project at that specific point in

time; each commit is distinguished by a distinct hash and is accompanied by an explanation message.

Branches allow developers to work independently on various features or fixes. While other branches are

used for development, the stable code is usually found in the main branch, also known as main (formerly

master). Rebasing and merging are two ways that changes from branches can be merged into the main

branch, each with a distinct function for preserving project history. A local copy of a repository is created by

cloning it, and local changes are synchronized with a remote repository through pushing and pulling. The

staging area serves as a buffer where modifications are made prior to commit. To manage and review these

changes, use commands like `git add`, `git commit`, `git status`, and `git log`. Submodules, cherry-pick, and

Git hooks are examples of advanced features that provide more customization and control. Well-known Git

hosting services, such as GitHub, GitLab, and Bitbucket, offer platforms for code review, repository

management, and tool integration, which promote collaborative development. Gaining proficiency with Git

greatly improves development processes by facilitating effective teamwork and code management.

Keywords: Git, GitHub, GitLab, Development, Projects, Repository, Version, System

1. Introduction

Git is currently the most widely used version control system due to its open-source nature, which makes it

simple to use for a variety of tasks. Git makes it possible for multiple people to collaborate while using the

same files. Additionally, it aids in the team's ability to handle the confusion that frequently arises when

several people edit the same file. Git copies changes from one such repository to another and gives each

developer a local copy of the complete development history. Git is a distributed version control system that

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (18)

can handle any size project quickly and effectively.[1] It is free and open-source. Git is based on the idea of

distributed software development, to which multiple developers may have access. GitHub is essentially a

Microsoft-owned for-profit business that hosts Git repositories online. It facilitates online, remote, and user-

to-user sharing of git repositories. On GitHub, hosting a public repository is also free of charge. Users share

their repository on the internet for a variety of purposes, such as community service, open source

contribution, project sharing, and project deployment, among many others. Git is a robust version control

system that is frequently used to monitor source code changes made during the software development

process. Since its creation by Linus Torvalds in 2005, Git has grown to be a vital resource for developers

everywhere. Gaining an understanding of Git will greatly improve your teamwork and coding productivity.

With GitHub, you may access and download projects from any computer that hosts Git repositories. Git is

currently the most widely used version control system due to its open-source nature, which makes it simple

to use for a variety of tasks.

 Git makes it possible for multiple individuals to collaborate while using the same files. Additionally,

it aids in the team's ability to handle the misunderstanding that frequently arises when several people modify

the same file. Git copies changes from one such repository to another and gives each developer a local copy

of the complete development history.

 Git is a version control system that is used by the web-based platform GitHub to assist developers in

tracking and managing code changes. It enables numerous users to work together on a project from any

location in the world, keep track of changes, and contribute to the code. GitHub caters to both individuals

and large enterprises with its free and paid plans. Git is a potent distributed version control system that

allows for smooth collaboration and extensive history tracking by monitoring and managing code changes

made by several contributors. Among its fundamental functions are branching and merging, which enable

concurrent development on various features or fixes, as well as a staging area for grouping changes prior to

committal. Advanced features like rebasing, cherry-picking, and hooks for unique workflows are also

supported by Git. These features are expanded by GitHub, a well-known platform based on Git that offers an

intuitive interface for code review, repository hosting, and collaboration. It has features like issues and

project boards for tracking tasks and bugs, pull requests for proposing and discussing changes, and

integration with continuous integration/continuous deployment (CI/CD) tools for automating testing and

deployment. GitLab is a DevOps platform that combines multiple software development tools with Git-

based version control. It provides strong capabilities for project management tools, security features,

container registry, continuous integration and deployment pipelines, source code management, and

analytics. It supports a variety of deployment requirements and improves development workflows and

teamwork. It is offered as a self-hosted and cloud-based service.[2]

2. Git Repository Organization

 There are Four phases that enable a seamless workflow that ensures effective version control and

collaboration throughout the development process as changes are made, reviewed, and integrated into a

version-controlled system.

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (19)

1. Working directory: This is the local directory in which you create the project and edit the code. Your

active file editing directory is the working directory. This is the area you work directly with, where you

make all of your file edits and new creations. Version control does not yet apply to changes made in this

directory.

2. Staging Area: The staging area, also called the index, is where you should put your project before

committing to it. Other team members use this for code reviews. The index, which is another name for the

staging area, serves as a mediator between the local repository and the working directory. Here, you add new

or modified files to get your changes ready for commit. You can examine and stage changes as needed

before they become a part of the project's history in the staging area.

3. Local Repository: Before submitting changes to the project's central GitHub repository, you should first

commit them to this repository. What the distributed version control system offers is this. This is in line with

our directory's git folder. Git keeps track of the commits in the local repository. The changes you've staged

and committed are documented in the history of the local repository. This repository's commits are each

uniquely identified by a hash that contains information about the commit, such as the author, timestamp, and

message. The whole history of commits for the branch you are working on is stored in the local

repository.[3]

4. Central Repository: In a Git workflow, the "central repository" is commonly referred to as the "remote

repository". Each team member has a local repository copy of this project, which is the primary project on

the central server. A shared repository that acts as a focal point for cooperation is the remote repository.

Usually, it is hosted on websites like Bitbucket, GitHub, and GitLab. Several contributors can synchronize

their changes with one another via the remote repository. In order to update their local repository with

contributions from other team members, developers push their local commits to the remote repository and

pull changes from it.

3. Features of Git

1. Distributed System: Users can work on a project using distributed systems from anywhere in the world.

Several distant collaborators can access a central repository within a distributed system by utilizing a version

control system. These days, one of the most widely used version control systems is called Git. In the event

that the central server experiences a system failure, having a central server causes a problem with data loss

or disconnectivity. Git mirrors the entire repository on each snapshot of the version that the user is pulling in

order to address this kind of scenario. In this scenario, users who have downloaded the most recent project

snapshot may be able to retrieve the copy of the repositories in the event that the central server crashes.[4]

2. Safe: Git maintains a history of every commit made by every team member to the developer's local copy.

Every time a push operation is carried out, a log file is kept track of and pushed to the central repository.

Therefore, the developer can easily track and handle any issues that may arise. Git stores all of the records as

objects in the hash using SHA1. These hash keys allow each object to work together with the others. A 14-

digit Hex code is created from the commit object using the cryptographic algorithm SHA1. Maintaining a

record of every commit made by every developer is beneficial.

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (20)

3. Open-Source: Git is a distributed version control system that is free and open-source that can quickly and

effectively manage any size project, from tiny to enormous. Because it allows users to alter the source code

to suit their needs, it is known as open-source. In contrast to other version control systems, which charge for

features like repository space, code privacy, accuracy, speed, etc., Git is entirely free software that offers

these features—and does so more effectively than the competition.

Git is open-source software that makes it simple and effective for multiple people to collaborate on the same

project at the same time. Git is therefore regarded as the greatest version control system on the market at the

moment.

4. Lightweight: While cloning is happening, Git stores all of the data from the central repository on the

local repository. Hundreds of people may be working on the same project, which could result in an

enormous amount of data in the central repository. While cloning so much data into local machines could

raise concerns about potential system failure, Git has already addressed this issue. Git uses lossless

compression, which reduces the amount of space needed to store compressed data in the local repository. It

uses the opposite method whenever this data is required, which conserves a significant amount of memory.

5. Economical: Git is freely available since it is published under the General Public's License (GPL). Git

makes a copy of the central repository on the developer's local computer; as a result, all operations are

carried out there before being pushed to the central repository. Pushing is only carried out once the local

machine's version is flawless and prepared for pushing to the central server. Nothing experimenting is done

with the central server's files. This saves a significant amount of money on pricey servers. Since all of the

heavy lifting is done on the client side, large machines are not required on the server side.[5]

4. Git Hosting Services

 Platforms that offer a central location for managing and storing Git repositories are known as Git

hosting services. These services, which are based on the distributed version control system Git, provide a

range of tools and features that make version control, collaboration, and project management easier.

1. GitHub

 Utilizing Git, a distributed version control system, GitHub is a popular platform for version control

and collaboration. GitHub, a 2008 startup that is currently a part of Microsoft, provides cloud-based

repository hosting for both small and large development teams. It offers strong code management and

sharing features, such as pull requests, code reviews, and public and private repositories, which promote

teamwork and preserve code quality. GitHub's usefulness in project management, continuous integration and

deployment (CI/CD), and other areas is further enhanced by its smooth integration with a wide range of

third-party programs and services. Important features include an extensive issue tracking system, GitHub

Pages for hosting static sites, and GitHub Actions for automating workflows. Because of its social coding

feature, users can follow other developers, participate in discussions, and contribute to open-source projects,

all of which help to create a thriving developer community. GitHub is a flexible tool for contemporary

software development, and its enterprise offerings offer extra features and support for businesses needing

more control and scalability. Git is a version control system that is used by the web-based platform GitHub

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (21)

to assist developers in tracking and managing code changes. It enables numerous users to work together on a

project from any location in the world, keep track of changes, and contribute to the code. GitHub caters to

both individuals and large organizations with its free and paid plans. With a feature-rich feature set that

caters to both small and large teams, GitHub is a well-known platform for version control and collaboration.

Fundamentally, GitHub offers stable repository hosting with options for both public and private repositories,

making it an ideal tool for managing and storing Git-based projects. With features like pull requests and

code reviews, it makes collaboration easier and enables teams to suggest, debate, and easily incorporate

changes. GitHub Actions provides robust automation for continuous integration and deployment (CI/CD),

making it simple for developers to write, test, and publish their code. Furthermore, GitHub has integrations

with a wide range of external tools and services, which expands its functionality to cover different facets of

the development lifecycle.[6]

2. GitLab

 A full suite of tools for managing the software development lifecycle is integrated into the DevOps

platform GitLab. GitLab was founded in 2011 and provides self-hosted and cloud-hosted versions to meet a

wide range of development requirements, from small projects to complex enterprise solutions. With its

powerful version control features that support both public and private repositories, advanced branching,

merging, and tagging, the platform excels at managing Git repositories. Build, test, and deployment

procedures are automated by GitLab's integrated CI/CD pipelines, allowing for continuous delivery with

configurable pipeline configurations. Built-in tools for milestone management, issue tracking, and kanban

boards streamline project management and enable effective planning and execution. With features like

merge requests for code reviews, the platform improves teamwork by enabling members to jointly suggest,

examine, and approve changes. With integrated scanning tools to find vulnerabilities early in the

development cycle and compliance management features to adhere to regulatory standards, security is a top

priority. GitLab offers tools for managing and deploying containerized applications in addition to supporting

Kubernetes and containers. GitLab is highly configurable and extensible, supporting a variety of third-party

integrations and custom modifications. It also includes monitoring and analytics tools for tracking

application performance and CI/CD pipeline metrics. Granular user management and access control let

administrators set up roles and permissions at different levels. GitLab provides a wealth of documentation

and assistance, and its enterprise users can take advantage of its expert support services. Using its self-

hosted configuration or its cloud-hosted version, GitLab offers a unified solution to enhance development

workflows and collaboration among various teams and projects. GitLab is an effective tool for contemporary

DevOps processes because it provides a full range of features intended to address the whole software

development lifecycle. GitLab's strong repository management, which allows for both public and private

repositories to have advanced version control features like branching, merging, and tagging, is at the heart of

the software. The platform's integrated Continuous Integration/Continuous Deployment (CI/CD) pipelines

streamline development workflows and guarantee effective software update delivery by automating the

processes of building, testing, and deploying code. GitLab is also a master at project management; it offers

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (22)

capabilities like kanban boards, milestone management, and issue tracking to assist teams in efficiently

organizing, monitoring, and overseeing their work.[7]

3. Bitbucket

 Atlassian created Bitbucket, a Git repository management tool renowned for its smooth interaction

with other Atlassian products like Jira and Trello. It offers reliable repository hosting for Git repositories,

both public and private, and makes code management easier with features like tagging, branching, and

merging. Built-in CI/CD service Bitbucket Pipelines, which automates the building, testing, and deploying

of code, is a crucial part of Bitbucket. A `bitbucket-pipelines.yml` file is used to configure this automation,

which streamlines workflows for continuous integration and delivery. With its support for pull requests,

Bitbucket further improves teamwork by enabling members to suggest, examine, and debate code changes

prior to integration. Integrating Jira provides thorough project management and issue tracking by associating

pull requests and code commits with particular issues to improve project progress visibility. Furthermore,

Bitbucket offers access control and fine-grained branch permissions, guaranteeing safe and controlled access

to code. To further encourage teamwork and knowledge exchange, each repository may have a wiki for

upholding project-related notes and documentation. Bitbucket is a useful tool for managing software

development projects and encouraging productive teamwork overall thanks to its features and

integrations.[8]

5. Conclusion

 Git is a distributed version control system that monitors source code changes and is used in software

development. It maintains independent local repositories synchronized with a remote repository, enabling

numerous developers to work together on a single project. The working directory, staging area, local

repository, and central repository are the four stages of the Git workflow. The staging area is where changes

are added and staged before being merged into the project history, whereas the working directory is the local

directory where changes are made and edited. The main project on the central server is the local repository,

sometimes referred to as the remote repository.

Git is an open-source, safe version control system that lets users handle any kind of project. It keeps track of

each commit that each team member has done, making issue tracking and resolution simple. Git uses SHA1

hashing to save all records as objects, and it converts the commit object into a 14-digit Hex code. Because

all data from the central repository is stored locally, it is lightweight and requires less space than compressed

data storage.

Git hosting services, like GitHub, GitLab, and Bitbucket, are hubs for organizing and storing Git

repositories. These systems provide pull requests, code reviews, cloud-based repositories, robust code

management tools, and different development requirements. Also, Bitbucket facilitates pull requests, which

enhances collaboration.

www.ijsrmst.com

International Journal of Scientific Research in Modern Science and Technology (IJSRMST) (23)

6. REFERENCES

[1] Diomidis Spinellis (2012). Git. IEEE software 29 (3), 100-101.

[2] Jon Loeliger, Matthew McCullough (2012).Version Control with Git: Powerful tools and techniques for

collaborative software development." O'Reilly Media, Inc."

[3] Jiaxin Zhu, Minghui Zhou, Audris Mockus (2014). Patterns of folder use and project popularity: A case

study of GitHub repositories.

Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, 1-4.

[4] Johan Abildskov, Johan Abildskov (2020). Additional git features. Practical Git: Confident Git Through

Practice, 139-161.

[5] Mike McQuaid (2014). Git in practice. Simon and Schuster.

[6] Valerio Cosentino, Javier Luis, Jordi Cabot (2016). Findings from GitHub: methods, datasets and

limitations.

Proceedings of the 13th International Conference on Mining Software Repositories, 137-141.

[7] Prithwiraj Choudhury, Kevin Crowston, Linus Dahlander, Marco S Minervini, Sumita Raghuram (2020).

GitLab: work where you want, when you want. Journal of Organization Design 9, 1-17.

[8] Sudip Chakraborty, PS Aithal (2022). A practical approach to GIT using bitbucket, GitHub and

SourceTree. International Journal of Applied Engineering and Management Letters (IJAEML) 6 (2), 254-

263.

Cite this Article:

Gayatri Makrand Ghodke, Trupti Chavan, “An Overview of Git” International Journal of Scientific Research in Modern

Science and Technology (IJSRMST), ISSN: 2583-7605 (Online), Volume 3, Issue 6, pp. 17-23 June 2024.

Journal URL: https://ijsrmst.com/

DOI: https://doi.org/10.59828/ijsrmst.v3i6.216.

https://ijsrmst.com/
https://doi.org/10.59828/ijsrmst.v3i6.216

