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ABSTRACT 

              The fruit fly, scientifically known as Drosophila melanogaster, has been widely used as an 

important model organism for many years in biomedical and toxicological studies due to its genetic and 

physiological similarities to humans (Bilder & Irvine, 2017; Dos Santos & Cochemé, 2024). This study 

explores the toxicological impact of glyphosate-based herbicide exposure on D. melanogaster mortality. 

Flies were subjected to three different concentrations of glyphosate-based solution: 5 ml, 10 ml, and 20 ml. 

A dose-dependent increase in mortality was observed, with the 20 ml group exhibiting the highest lethality. 

These findings suggest that elevated concentrations of glyphosate-based herbicides may significantly 

compromise survival in D. melanogaster, highlighting potential risks associated with environmental 

exposure to such compounds. 
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1 INTRODUCTION 

           Drosophila melanogaster has been a key model organism in genetics, with Thomas Hunt Morgan’s 

work in the 1910s establishing transmission genetics and later studies in the 1970s exploring genetic control 

of development and behavior (Roberts, 2006).  It  has been widely used as a model organism due to its short 

lifespan and high genetic similarity to mammals, making it valuable for metabolic and signal transduction 

studies (Staats et al., 2018). Additionally, its maintenance is cost-effective, and there are fewer ethical 

concerns compared to rodent models (Staats et al., 2018) 

          Higher organisms require macromolecules for metabolism, unlike microbes that synthesize biomass 

from elements. Drosophila melanogaster needs carbohydrates for energy, amino acids for nitrogen and 

sulfur, sterols (cholesterol/ergosterol), choline, inosine, uridine, myo-inositol, and B-group vitamins (B1, 
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B2, B3) for optimal growth and function. Artificial diets have been used to study its nutritional physiology, 

allowing precise control over nutrient composition (Piper, 2017). 

2  METHODS AND METHODOLOGY  

2.1 Stock preparation  

           Wild Drosophila flies were caught from the local environment, and a suitable medium was prepared 

for culturing them. The required materials—8.3 g of maize, 2.5 g of sucrose, 0.5 g of dextrose, 1.5 g of 

yeast, 1.8 g of agar-agar, and 100 mL of distilled water—were weighed and placed in a beaker. Distilled 

water (100 mL) was added, and the contents were thoroughly mixed. The mixture was heated on a medium 

flame until it achieved a paste-like consistency. The medium was sterilized and then it was left in an 

autoclave for 15 minutes at 121°C. After sterilization, the medium was allowed to cool, and 0.68 mL of 

orthophosphoric acid and 4 mL of propanoic acid were added to it. The mixture was thoroughly stirred to 

ensure uniform distribution of the chemicals (National Centre for Biological Sciences, 2017). Finally, the 

prepared medium was poured into sterilized glass bottles, which were sealed and stored under sterile 

conditions until further use for Drosophila culture. 

2.2 Test Chemical 

          Glyphosate (Fig. 1) is a broad-spectrum, systemic herbicide commonly applied in both agricultural 

and non-agricultural environments. Its mode of action involves blocking the enzyme 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), which is crucial for the shikimate pathway in plants 

and some microorganisms, disrupting the production of aromatic amino acids. While initially considered 

safe for non-target organisms, its pervasive presence in food, water, and air has raised environmental and 

health concerns (Kanissery et al., 2019) Recent studies suggest glyphosate's role in oxidative stress, 

endocrine disruption, and neurological effects, alongside its impact on ecosystems by affecting plants, 

insects, and dependent species. (Van Bruggen et al., 2018).  

Chemical Name: N-( phosphonomethyl ) glycine 

 Molecular Formula: C₃H₈NO₅P 

 

 

 

 

 

Figure 1: Molecular structure of glyphosate 

The herbicide "Menaka 71," containing 71% SG ammonium salt of glyphosate, was used in this study due to 

its high glyphosate content and agricultural relevance. Its formulation includes 71% w/w ammonium salt of 

glyphosate, 12.5% w/w polyoxyethylene amine surfactant for enhanced efficacy, and ammonium sulfate as a 

stabilizing agent. This composition enables efficient herbicide delivery, making it ideal for evaluating 

glyphosate’s toxicological impacts on non-target organisms like Drosophila melanogaster. 
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2.3 Dose preparation 

        A stock solution was prepared by dissolving 1.000 g of Menaka herbicide (71% glyphosate) in 100 mL 

of the medium. From this stock solution, doses were derived to achieve final conc. of 5 mL/L, 10 mL/L, and 

20 mL/L respectively in the food medium (Fig 2, Table 1), with 0 mL/L serving as the control. These 

concentrations were selected based on the LC50 values reported by Talyn et al. (2019) ensuring sub-lethal 

effects with minimal mortality during experimentation. 

 

 

                      (a)                                             (b)                                             (c) 

Figure 2: Drosophila melanogaster dosing bottles with different glyphosate concentrations – 

  (a) 5ml, (b) 10ml and (c) 20ml  

 

Group Glyphosate Concentration 

(g/L) 

Volume of Glyphosate 

Solution Added (mL) 

Control 0.0 - 

Treatment 1 0.5 5ml 

Treatment 2 1.0 10ml 

Treatment 3 2.0 20ml 

 

Table 1. Preparation of different concentrations of glyphosate from the stock solution for the 

experimental groups. The control group received no glyphosate, while Treatment 1, Treatment 2, and 

Treatment 3 received glyphosate concentrations of 0.5 g/L, 1.0 g/L, and 2.0 g/L, respectively. 

RESULTS  

          The impact of glyphosate-based herbicide on the mortality of Drosophila melanogaster was evaluated 

over a 15-day period using three different concentrations: 0.5 g/L (low dose), 1.0 g/L (medium dose), and 

2.0 g/L (high dose). Each treatment group included approximately 55–60 flies. No mortality was recorded 

during the initial phase of exposure; however, deaths began to appear after Day 10 and progressively 

increased toward Day 15. The following table presents the cumulative number of deaths observed each day 

across the three treatment groups. 
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Day 0.5 g/L (55 flies) 1.0 g/L (58 flies) 2.0 g/L (60 flies) 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 1 1 

6 0 1 1 

7 0 2 2 

8 0 2 3 

9 1 3 4 

10 1 4 5 

11 2 6 7 

12 3 10 10 

13 4 13 13 

14 6 14 15 

15 7 15 17 

Table 2. Cumulative mortality of Drosophila melanogaster over a 15-day exposure period to three different concentrations 

of glyphosate-based herbicide solutions (0.5 g/L, 1.0 g/L, and 2.0 g/L). 

Following the 15-day exposure period, the total number of deaths in each group was used to calculate the 

mortality rate using the formula: 

Mortality Rate (%) = (Number of Deaths ÷ Total Number of Flies) × 100 

 0.5 g/L: 7 deaths out of 55 flies → (7 ÷ 55) × 100 = 12.73% 

 1.0 g/L: 15 deaths out of 58 flies → (15 ÷ 58) × 100 = 25.86% 

 2.0 g/L: 17 deaths out of 60 flies → (17 ÷ 60) × 100 = 28.33% 

These findings indicate a clear dose-dependent increase in mortality, with higher concentrations of 

glyphosate resulting in greater fly mortality. 

 
Figure 3. Line graph depicting cumulative mortality of Drosophila melanogaster over a 15-day period under exposure to 

three concentrations of glyphosate-based herbicide ( 0.5 g/L, 1.0 g/L, and 2.0 g/L respectively). Mortality began to increase 

notably after Day 10, with the highest cumulative deaths observed in the 2.0 g/L treatment group, indicating a 

concentration-dependent effect. 
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DISCUSSION 

The findings of this study indicate a clear dose-dependent increase in mortality among Drosophila 

melanogaster exposed to glyphosate-based herbicide formulations. Mortality remained negligible during the 

initial exposure period but showed a marked increase after Day 10, with observed rates of 12.73% at 0.5 g/L, 

25.86% at 1.0 g/L, and 28.33% at 2.0 g/L. This progressive rise in mortality suggests a cumulative toxic 

effect over time. These outcomes are consistent with those of R. R. Galin et al. (2019), who reported 

decreased lifespan and reduced progeny count in D. melanogaster at a concentration of 2.8 mg/ml of 

glyphosate. Such parallel findings reinforce the hypothesis that even low concentrations of glyphosate can 

compromise survival and developmental viability in fruit flies. 

Beyond Drosophila, glyphosate has demonstrated toxic effects across a range of non-target species, 

emphasizing its ecological implications. Benamú et al. (2010) identified sublethal effects in spiders, 

including altered prey consumption and reproductive performance. Lucas Battisti et al. (2021) documented 

increased bee mortality across different life stages and exposure methods, while Rodríguez et al. (2021) 

revealed endocrine disruptions in crabs, such as decreased sperm count and oocyte reabsorption. These 

examples collectively suggest that glyphosate-based herbicides, even within recommended agricultural 

doses, may interfere with fundamental biological processes in non-target organisms. Given the neurological 

basis of climbing behavior in Drosophila, the observed impairments may result from neurotoxic or 

metabolic disruptions, as similarly proposed by Virginia Moser et al. (2022) in mammalian systems. Future 

investigations should aim to dissect the underlying physiological pathways involved, thereby deepening our 

understanding of glyphosate’s broader ecological and biological impacts. 
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