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ABSTRACT 

Reliable power supply is critical in hospitals, industrial plants, and data centers, where outages can result 

in life-threatening or costly disruptions. Most existing automatic transfer switch (ATS) systems rely on fixed 

rule-based logic, lacking predictive intelligence or equipment prioritization. This study proposes an IoT-

enabled, machine learning–driven framework for dynamic equipment prioritization and automated three-

phase power switching. Real-time data—including voltage, current, temperature, and vibration—are 

captured through IoT sensors and analyzed using Decision Trees, Random Forests, and Neural Networks to 

predict faults and assess equipment criticality. A modular object-oriented architecture allows easy 

integration of new data sources and algorithms, ensuring scalability. The decision engine allocates power 

from grid, generator, and solar sources based on equipment priority scores and live load conditions, 

guaranteeing uninterrupted supply to mission-critical assets. Experimental validation in healthcare and 

industrial testbeds achieved 98% accuracy in prioritization, 100% correctness in switching, and reduced 

downtime by 40% compared with conventional ATS systems. The proposed approach advances resilient 

power management by coupling predictive maintenance with context-aware switching, improving reliability, 

efficiency, and operational safety in mission-critical environments. 

Keywords:  IoT; Automated Power Switching; Equipment Prioritization; Machine Learning; Critical Infrastructure; Three-Phase 

Systems.

 

I. INTRODUCTION 

Uninterrupted power is vital for healthcare, industrial automation, and data centers, where even brief 

outages can lead to equipment failure, data corruption, production losses, or loss of life. The World Health 
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Organization (2022) reports that over 60% of healthcare facilities in low- and middle-income countries 

experience frequent outages, compromising emergency care, while IEEE Spectrum (2021) estimates data 

center downtime costs $9,000 per minute. These realities highlight the need for intelligent power 

management systems capable of anticipating failures and dynamically prioritizing critical equipment. 

Traditional automatic transfer switch (ATS) devices passively switch between grid and backup 

sources when outages occur, relying on fixed voltage thresholds and time-delay relays. Although 

commercial microgrid solutions from Siemens and Schneider Electric offer more advanced supervisory 

control, they remain largely rule-driven, costly, and difficult to scale in low-resource environments. 

Consequently, most existing solutions fail to differentiate between critical and non-critical loads, resulting in 

inefficient backup power allocation and reduced resilience during crises. 

The convergence of Internet of Things (IoT) sensing and machine learning (ML) provides an 

opportunity to transform power management from reactive to predictive and adaptive. IoT devices now 

enable real-time monitoring of voltage, current, temperature, and vibration, while ML algorithms such as 

Decision Trees, Random Forests, and Neural Networks can detect anomalies and forecast failures. However, 

current implementations focus mainly on fault detection or predictive maintenance rather than real-time 

prioritization of loads and dynamic three-phase source switching. 

This paper addresses these gaps by proposing a modular IoT- and ML-enabled framework for 

dynamic equipment prioritization and automated three-phase switching. The system assigns priority scores 

to loads based on operational criticality and predicted health, then uses a decision engine to allocate power 

from grid, generator, and solar sources to guarantee uninterrupted supply to essential equipment while 

managing or shedding non-critical loads. The architecture employs object-oriented design for scalability, 

supports integration of additional sensors and energy sources, and follows CRISP-DM for systematic ML 

model development. 

II RELATED WORK 

Automatic Transfer Switches (ATS) have long been the standard solution for ensuring power 

continuity in critical environments. These systems detect a loss of mains supply and switch automatically to 

backup sources such as generators or UPS units (Ezema et al., 2012). While implementations range from 

simple electromechanical relays to advanced PLC-based units, they share a common limitation: they operate 

reactively, relying on preset thresholds for voltage and frequency. This threshold-based approach means that 

all loads are treated equally, with no differentiation between critical and non-critical equipment. As a result, 

mission-critical systems such as life-support devices may experience interruptions while less essential loads 

continue to consume power. In addition, most conventional ATS solutions offer only binary switching 

between grid and generator sources, with little to no support for integrating alternative sources such as solar. 

The emergence of IoT-based energy monitoring has introduced new opportunities for improving 

power reliability. IoT systems integrate sensors to track voltage, current, frequency, and environmental 

parameters in real time, enabling remote dashboards and alerts that improve visibility and operational 

oversight (Kumar et al., 2021). For instance, Yadav and Tiwari (2020) developed an IoT-based intelligent 
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switching system for healthcare facilities that supported remote monitoring and SMS alerts, while Gupta and 

Banerjee (2022) explored IoT–AI integration to strengthen energy resilience in hospitals. Despite these 

advances, IoT-based solutions are largely passive. They collect and display data but stop short of providing 

actionable intelligence for equipment prioritization or automated switching. Without an intelligent decision-

making layer, IoT systems alone cannot allocate power dynamically or optimize resource usage in real time. 

Machine learning (ML) has been extensively explored as a way to enhance predictive maintenance 

and fault management in electrical systems. Techniques such as Random Forests, Support Vector Machines 

(SVM), and neural networks have been used to detect anomalies, forecast transformer failures, and even 

predict solar generation (Chen et al., 2021; Li & Jameel, 2022). Alsharif et al. (2023) reported 92% accuracy 

in microgrid fault detection using a Random Forest model, while Lee and Park (2021) demonstrated the use 

of neural networks for industrial IoT anomaly detection. Although these studies show that ML can achieve 

high predictive accuracy, most implementations stop at generating predictions and do not connect to real-

time control frameworks. Consequently, even when failures are anticipated, there is often no automated 

mechanism to reallocate power or prioritize critical loads based on the prediction, creating a disconnect 

between analytics and actuation. 

Research in microgrid control has similarly focused on load management and renewable energy 

integration. Patel and Mehta (2021) proposed an adaptive AI-based load-shedding method to optimize grid 

performance, while Muralitharan et al. (2022) applied reinforcement learning to improve renewable energy 

utilization. Commercial microgrid platforms, including Siemens Microgrid and Schneider Electric 

EcoStruxure™, enable supervisory control and renewable integration but remain expensive and depend 

heavily on static, rule-based optimization. Furthermore, most of this research has concentrated on grid-scale 

or community-level energy optimization rather than equipment-level prioritization within facilities, leaving 

critical devices in hospitals or production lines vulnerable during outages. 

Taken together, the literature highlights a persistent gap. Existing ATS systems remain limited to 

static, threshold-based switching that cannot distinguish between critical and non-critical equipment. IoT 

monitoring platforms improve visibility but lack the intelligence required for autonomous prioritization and 

control. Similarly, machine learning approaches offer accurate predictive insights but are rarely integrated 

into real-time actuation systems. Addressing this gap requires a unified framework that combines IoT 

sensing, ML-driven prioritization, and automated three-phase switching, enabling both predictive fault 

handling and adaptive resource allocation. 

This study advances the state of the art by bridging monitoring, prediction, and control into a single 

framework. The proposed system assigns real-time priority scores to equipment based on operational 

criticality and health status, dynamically switches among available power sources, and ensures uninterrupted 

supply to essential loads. By directly coupling machine learning predictions with IoT-based actuation, it 

enables context-aware, automated power management, representing a next-generation intelligent ATS 

architecture designed for mission-critical resilience. 
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III. SYSTEM ARCHITECTURE 

 

The system is designed as a modular, scalable framework that unifies IoT sensing, machine learning 

(ML) prediction, and automated actuation. As illustrated in Figure 1, the architecture integrates four 

interdependent layers—IoT Sensing, Data Processing and Machine Learning, Decision and 

Prioritization, and Actuation and Switching—which work together to enable real-time monitoring, 

predictive analytics, and intelligent power allocation across multiple energy sources. Figure 1 shows the 

system architecture.  

 

                                     

 

Figure 1: System Architecture 

 

At the foundation, the IoT Sensing Layer acquires real-time electrical and environmental parameters using 

voltage, current, temperature, and vibration sensors. These devices continuously monitor supply quality, 

load consumption, thermal variations, and early signs of mechanical degradation in critical equipment. A 

microcontroller-based edge device (ESP32/NodeMCU) preprocesses the data—filtering noise and averaging 

readings—before transmitting them to the cloud via Wi-Fi. 
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Decision & Prioritization Engine 

-Compute Dynamic Priority Score 
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-Sub-100ms Seamless Source Transfer 
-Phase Balancing & Fail-Safe ATS Mode 
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The Data Processing and Machine Learning Layer performs data cleaning, normalization, and time-series 

segmentation. Extracted features such as RMS voltage, current harmonics, and vibration amplitude are 

passed to three supervised ML models—Decision Tree (DT), Random Forest (RF), and Artificial Neural 

Network (ANN)—which predict equipment health state (healthy, warning, fault risk) and estimate time-to-

failure. 

At the core lies the Decision and Prioritization Engine, which integrates the predicted health status, 

equipment criticality, and real-time load conditions to compute a dynamic Priority Score (PS) for each 

device. The PS determines which loads receive uninterrupted power during shortages, ensuring that life-

critical or mission-critical equipment takes precedence over nonessential loads.  

Finally, the Actuation and Switching Layer executes these decisions through a three-phase solid-state 

relay (SSR)-based switching system, ensuring sub-100 ms switching latency, phase balancing, and fallback 

to conventional ATS logic in case of communication failure. Control commands are transmitted via MQTT, 

and operators can monitor or override system behavior via a cloud-based dashboard. 

This integrated architecture offers modularity, scalability, and adaptability, allowing new sensors, ML 

models, and power sources to be added with minimal redesign. By unifying IoT-based monitoring, ML-

driven prediction, and automated switching, the proposed solution closes the loop between data acquisition 

and action—delivering proactive fault prevention, predictive maintenance integration, and intelligent power 

allocation. 

IV METHODS 

The development and validation of the system followed the Cross-Industry Standard Process for Data 

Mining (CRISP-DM) methodology. This framework ensured a structured integration of IoT sensing, 

machine learning (ML), and real-time decision-making. In addition, Object-Oriented Programming (OOP) 

principles were applied to achieve modularity, scalability, and adaptability of the system components. 

4.1 CRISP-DM Workflow 

The CRISP-DM process consists of six iterative phases that guided the end-to-end development of the 

system. Each phase addressed a critical aspect of design, from defining business objectives to deploying the 

final decision engine. Table 1 summarizes the key activities in each phase for clarity and conciseness. 

Table 1. Summary of CRISP-DM Phases Applied to the Proposed System 

Phase Key Activities 

Business 

Understanding 

Defined the primary objective: design a resilient power management system minimizing 

downtime and prioritizing mission-critical equipment. 

Data 

Understanding 

IoT sensors captured voltage, current, temperature, and vibration data. Historical and 

simulated outage scenarios were incorporated to mimic hospital and industrial settings. 

Data Preparation Noise removal (moving average filters), normalization ([0,1] range), feature 

engineering (load factor, harmonic distortion), and labeling (healthy/warning/fault). 

Final dataset ≈ 50,000 records. 
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Modeling Algorithms: Decision Tree (DT), Random Forest (RF), Artificial Neural Network 

(ANN). Hyperparameters tuned via Grid Search (2–4 hidden layers, 16–64 neurons, 

ReLU/tanh activation). 

Evaluation Evaluated with 10-fold cross-validation on accuracy, precision, recall, and F1-score. 

ANN achieved the best accuracy (95%) and highest generalization performance 

(validated via ROC curves). 

Deployment ANN deployed in a cloud-based decision engine. MQTT protocol enabled real-time 

actuation commands to three-phase switching hardware. 

 

4.2 Experimental Setup 

To validate the system under real-world conditions, two testbeds were established: a hospital environment 

and an industrial facility. Each was equipped with IoT sensors, ESP32 microcontrollers, and a cloud-hosted 

decision engine. Backup power was provided through a diesel generator and a 5 kW solar system. The 

switching operation was executed via three-phase solid-state relays and industrial-grade contactors. Table 2 

details the testbeds used. 

 

Table 2: Experimental Testbeds for System Validation 

Testbed Equipment Backup Power 

Hospital Ventilators, infusion pumps, diagnostic equipment, air-

conditioning units 

Diesel generator + 5 

kW solar 

Industrial Conveyor belts, robotic arms, cooling fans, auxiliary 

lighting 

Diesel generator + 5 

kW solar 

 

To support data acquisition, processing, and automated switching, both hardware and software components 

were carefully selected and integrated. Table 3 provides a summary of the implementation stack used in the 

system. 

 

Table 3:  Hardware and Software Components 

 

Category Components / Tools 

Hardware ESP32 microcontrollers, ACS712 current sensors, ZMPT101B voltage sensors, 

DS18B20 temperature sensors, vibration accelerometers, solid-state relays, 

industrial-grade contactors 

Software Python (for ML models and cloud deployment), Arduino IDE (ESP32 firmware), 

Blynk IoT platform (dashboard visualization), TensorFlow (ANN implementation) 

 

This combination ensured real-time sensing, robust ML-based decision-making, and seamless actuation with 

minimal latency. 
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4.3 Prioritization Scoring Algorithm 

At the core of the system lies the Decision and Prioritization Engine, which integrates ML predictions, 

equipment criticality, and real-time load data. The Priority Score (PS) for each equipment iii is computed 

using Equation (1). 

Psi = αCi + βHi + γLi  

Where: 

i. Ci: Criticality score (assigned by domain experts; e.g., life-support = 10, auxiliary = 2) 

ii. Hi: Health score (ML output, normalized to [0,1]) 

iii. Li: Load importance factor (% of mission-critical demand) 

iv. α,β,γ: Tunable weights (Hospital: 0.5, 0.3, 0.2; Industrial: 0.4, 0.4, 0.2) 

During shortages, the engine ranks equipment by PSi and sequentially allocates available power until 

capacity is exhausted. Lower-priority equipment is shed first. Figure 6 (see supplementary material) 

illustrates the flow of the prioritization algorithm, from sensor inputs to ranked load allocation. 

4.4 Evaluation Metrics 

To comprehensively assess system performance, four metrics were employed. These are summarized in 

Table 4. 

Table 3: Evaluation Metrics for System Performance 

Metric Purpose 

Prediction Accuracy Measures correctness of ML-based health predictions 

Prioritization Accuracy Measures correct allocation of power to mission-critical loads 

Switching Reliability Measures success rate of automated three-phase transfers 

Downtime Reduction Measures percentage reduction in outage-related downtime vs. baseline 

Automatic Transfer Switch (ATS) 

 

V RESULTS AND DISCUSSION 

This section reports system performance from hospital and industrial testbeds across four dimensions: 

prediction accuracy, prioritization accuracy, switching reliability, and downtime reduction. All results are 

summarized in Tables 5–5. 

5.1 Prediction Accuracy of Machine Learning Models 

This subsection evaluates ML performance for equipment health prediction. The results are summarized in 

Table 5. 

Table 5. ML model performance for equipment health prediction 

Model Accuracy Precision Recall F1-score 

Decision Tree 87% 0.85 0.84 0.84 

Random Forest 92% 0.91 0.90 0.90 

Neural Network 95% 0.94 0.95 0.95 
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As summarized in Table 5, the Artificial Neural Network (ANN) achieved the highest overall performance, 

with 95% accuracy and a recall of 0.95, making it the most reliable input to the prioritization engine. 

5.2 Prioritization Accuracy 

This subsection evaluates how often the decision engine correctly allocated backup power to mission-critical 

equipment. The results are summarized in Table 6. 

Table 6:  Prioritization accuracy by testbed 

Testbed Correct Prioritizations (%) 

Hospital 99% 

Industrial 97% 

Combined 98% 

 

As shown in Table 6, the prioritization engine achieved 98% combined accuracy. This demonstrates that 

under constrained capacity, non-critical loads were consistently shed while life-critical devices retained 

power. 

5.3 Automated Three-Phase Switching Reliability 

This subsection reports switching reliability and latency over 200 test cycles. The results are summarized in 

Table 7. 

Table 7. Automated switching performance 

Metric Result 

Success Rate 100% 

Average Transfer Time < 100 ms 

 

As summarized in Table 7, the system achieved 100% changeover success with transfer times below 100 

ms—orders of magnitude faster than typical Automatic Transfer Switch (ATS) delays (0.5–1.5 s; Ezema et 

al., 2012). This near-instant switching ensures no perceptible interruption for sensitive equipment. 

5.4 Downtime Reduction 

This subsection compares average monthly downtime across three configurations: conventional ATS, IoT 

monitoring only, and the proposed framework. The results are summarized in Table 8. 

Table 8. Monthly downtime comparison 

System Type Avg. Downtime / Month Improvement vs. ATS 

Conventional ATS 5.0 h — 

IoT Monitoring Only 3.8 h 24% 

Proposed Framework 3.0 h 40% 

As summarized in Table 8, the proposed framework reduced outage-related downtime by 40% compared to 

a conventional ATS, and by 21% relative to IoT-only monitoring. These gains stem from predictive 

allocation (preemptive switching) and dynamic prioritization under constrained supply. 
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4.3 System Prototype Outputs 

Figures 2 and 3 illustrate the form inputs and prediction outputs. Depending on the input to the system, it 

predicts the criticality of an equipment and whether it is operational. The automatic switching is done 

according to the prediction results. When an equipment is confirmed to be critical, it is prioritized and 

switched on else it remains off.  Figure 4 shows the breadboard view and outer view of the model. The 

sensors and actuators are connected to microcontroller for data transmission and equipment control.  

    

Figure 2: User Enters Test Data for Prediction         Figure 3: System Prediction Output 

 

          

Figure 4: Breadboard and outer view of the model 

 

VI CONCLUSION AND FUTURE WORK 

This work presented a dynamic equipment prioritization and automated three-phase power switching 

framework that integrates IoT sensing, ML-based health prediction, and modular control logic. Unlike 

conventional ATS units, the system dynamically allocates backup power based on real-time equipment 

criticality and health status, enabling smarter load management under constrained capacity. 

The key outcomes include: 

i. 95% ML prediction accuracy (ANN model). 

ii. 98% prioritization accuracy for mission-critical equipment. 

iii. <100 ms switching latency with 100% reliability. 

iv. 40% downtime reduction compared with conventional ATS solutions. 
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These results confirm the framework’s potential to improve resilience in hospitals, industries, and data 

centers—domains where downtime carries high human and economic costs. Its OOP-based modular 

design ensures scalability, supporting future integration of renewable energy and advanced AI algorithms 

without major redesign. 

Future work will focus on: 

i. Large-scale, multi-site validation for better generalizability. 

ii. Strengthening IoT security via end-to-end encryption and blockchain-based integrity mechanisms. 

 

Overall, this research demonstrates a next-generation, context-aware power management system that 

transforms predictive analytics into real-time action, paving the way for smart, resilient infrastructure in 

developing and developed regions alike. 
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